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Abstract

Explicit asymptotic model is presented for a singularly perturbed boundary value problem of the uncoupled

thermo-elasticity. Interaction of a crack and a small inclusion with di�erent elastic and thermo-elastic moduli is
analyzed. Asymptotical formulae are derived for the crack trajectories in terms of PoÂ lya-SzegoÈ tensors associated
with the defects. E�ect of the temperature on the de¯ection of the crack is compared with propagation of the crack

in heterogeneous elastic solid with zero temperature increment. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Fracture propagation in inhomogeneous media is one of the subjects which are of the interest in the
research community in the recent years. Extensive work has been published on the fracture of brittle
materials and the crack formation (see monographs by Sih, 1978; Sih and Chen, 1981; Sih, 1991).
Starting from Bueckner (1970) the technique of the weight functions is used to evaluate the stress
intensity factors for the problems with cracks. We would like to refer to the papers by Willis and
Movchan (1995) and Movchan and Willis (1995) who derived the weight functions for 3D cracks and
analyzed three-dimensional propagating crack (Willis and Movchan, 1997). The question of crack
propagation in inhomogeneous elastic media has been studied by Movchan et al. (1991), interaction with
particular inclusions has been considered by Bigoni et al. (1998). Bigoni et al. (1996) compared the
results of asymptotical analysis with the experimental data obtained in Ceramic Center (Bologna). The
crack-inclusion interaction has been studied by Rubinstein (1986) with the use of the integral equation
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technique. The interaction of a crack with an array of micro-cracks has been analyzed by Rubinstein
and Choi (1988).

In the text below, we address the problem of interaction between defects and a growing crack in the
case of thermo-elastic medium. It is shown that the e�ect of fracture propagation signi®cantly depends
on the temperature contribution which should be taken into account. Comparison of the crack
propagation in elastic (no thermal stresses) and thermo-elastic media is given. An asymptotic method is
applied to obtain explicit formulae for the stress intensity factors and the crack trajectory. The criterion
of Sih (1991) is used to characterize the direction of the crack propagating in a brittle elastic material.
The PoÂ lya-SzegoÈ tensors are employed on the ®nal stage of the algorithm to obtain analytical formulae
for the crack de¯ection.

The mathematical model presented in this paper uses just one of the well-known criteria for the
orientation of the crack in a brittle material. However, the model allows for straightforward
modi®cations involving other criteria of fracture. The fracture criterion is used only at the ®nal step of
the asymptotic algorithm (see formula (22) for the crack de¯ection). Comparison of di�erent fracture
criteria is not covered in the present text.

We consider separately the elastic de¯ection (de¯ection corresponding to zero increment of the
temperature) and the thermal de¯ection (di�erence between total de¯ection and the elastic one). In
particular, the conditions are analyzed when the thermal de¯ection and the elastic de¯ection compensate
each other and the temperature causes the reduction in the amplitude of the de¯ection. This problem
can be regarded as the problem of the residual stress e�ect in the composite medium. Thermal stresses
in the inclusion produce a jump in the displacement ®eld on the interface boundary. Jump conditions of
the same kind correspond to the residual stresses occurring under cooling. The problem can be
reformulated to be a problem of interaction between a crack and an inclusion with non-perfect interface.
The interface is speci®ed by the jump, which is the function of the temperature, either in displacement
or in traction boundary conditions.

2. Mathematical formulation of the problem

Consider an in®nite thermoelastic plane with a small inclusion Ge and a crack M0. Let the elastic
material of the plane be characterized by the LameÂ constants m and l and the thermoelastic constant g:
The inclusion Ge is characterized by m0, l0 and g0:

On crack faces M2
0 the tractions are speci®ed, on the boundary @Ge the interface boundary conditions

are imposed. We solve the following boundary value problem of the linear uncoupled thermo-elasticity.
The equilibrium equations are speci®ed in the in®nite plane with an elastic inclusion:

L�u; x�: � mr 2u� �l� m�rr � u � grT�x�, x 2 R2nfGe [M0g,

L0�u0; x�: � m0r 2u0 �
ÿ
l0 � m0

�rr � u0 � g0rT�x�, x 2 Ge: �1�

An ideal contact is prescribed at the interface between the inclusion and the matrix:

sss�n��u; x� ÿ gTn � sss�n�0 �u0; x� ÿ g0Tn, u � u0, x 2 @Ge, �2�

where
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@x1
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�
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�
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�
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� @u1
@x2

�
�2m� l� @u1
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� @u1
@x1

1CCCCA
�
n1
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�
�3�

is the traction vector calculated via the elastic displacements only (no temperature change). The thermal
tractions gTn always act in the direction of normal vector n:

The condition (2) corresponds to the perfect interface boundary conditions in heterogeneous
materials: the `thermal' tractions (elastic and thermal forces both) and the displacement vectors are
continuous through the interface, while the `elastic' tractions (Eq. (3)) have a jump.

On the crack faces the inhomogeneous traction conditions are speci®ed

sss�n��u; x� � p�x� � gTn, x 2M2
0 , �4�

and at in®nity

u40, as jxj41:
Under these conditions the crack propagates due to the forces p�x� applied to the crack faces. We can
alternatively modify the conditions at in®nity on the square-root grows and put p�x� in Eq. (4) to be
zero.

u4K1I jxj1=2FI, as jxj41, �5�
where K1I is the stress intensity factor taking into account the e�ect of all forces on the crack faces and
FI is the Mode-I Williams vector.

In addition, the following heat conductivity problem is considered for the temperature ®eld T�x�:
kr 2T�x� � w�x�, x 2 R2nGe, k0r 2T0�x� � 0, x 2 Ge,

k
@T

@n
� k0

@T0

@n
, T � T0, x 2 @Ge,

TjM�
0
� TjMÿ

0
, @nTjM�

0
� @ nTjMÿ

0
� 0,

T4T1�x�, jxj41,

where n is a unit outward normal vector, k and k0 are the thermal conductivities of both phases, w�x� is
the intensity of the heat sources.

In the text below, the solution of the inverse problem Ð de®ning the trajectory of crack propagation
in an inhomogeneous material is presented. We begin with the formal asymptotic procedure where the
solution is speci®ed in terms of series in powers of the parameter e (ratio between the e�ective radius of
the inclusion and the distance between the crack and the defect). As a result the increment of the stress
intensity factor can be found as a function of the PoÂ lya-SzegoÈ matrix of the inclusion. Then we apply
the criterion of the quasi-static crack propagation (Sih and Chen, 1981). This criterion has been derived
by Sih from the analysis of the strain energy density around the crack. Of course, it does not take into
account the change in the microstructure of material near the crack tip. The strain gradient e�ects,
formation of the plastic zones around the crack tip and non-elastic dissipation of the energy are not
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considered. This criterion can be applied to evaluate the integral propagation of the crack when the
de¯ection angle is much less than the angle associated with the material length scale and the time of
propagation is much bigger then the relaxation time in the current material. The crack is supposed to be
a Mode-I crack (no shear forces on the crack phases). Di�erent criteria can be used (see discussion in
Sih, 1991), but analytical formulae for the crack de¯ection function become more complicated in that
case.

For illustration we give the contour plot of the typical stress distribution around the crack tip caused
by the presence of inhomogeneity in homogeneous external Mode-I loading (Fig. 1). The ®nite-element
modelling has been carried out with the use of COSMOS/M ®nite element package under the license of
the University of Bath (UK).

3. Formal asymptotics

Assuming that diamGe � distfGe, M0g, we introduce a small parameter as follows

e � diamGe

distfGe,M0g :

First, we consider the temperature distribution in a plane with an inclusion. In the case of equal thermal
conductivities �k � k0� the thermal boundary layers do not occur near the inclusion and the temperature
®eld can be found as a solution of the following problem:

kr 2T�x� � w�x�, x 2 R2,

T4T1, jxj41: �6�
In the case of di�erent thermal conductivities of the inclusion and matrix in the presence of heat
sources, we shall construct the boundary layer and apply the asymptotic series expansion:

Fig. 1. Mode-I crack in an elastic plane with a circular cavity: distribution of the maximal eigenvalue of the stress tensor.
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T�x� � T �0��x� � eT �1��X� �O�e2�, �7�
where T �1��X� is a boundary layer solution which compensates the discrepancy in the interface boundary
conditions produced by T �0��x�:

Given the temperature ®eld (Eq. (7)) we seek the displacement vector u as a solution of the boundary
value problem (1)±(4) in the form

u�x� � u�0��x� � e u�1��X� � e2u�2��x� �O�e3�: �8�

3.1. The leading-order term of the displacement ®eld u�0�

Here, the leading order term u�0��x� is a solution of the boundary value problem in R2nM0 (without
the defect):

mr 2u�0��x� � �l� m�rr � u�0��x� � grxT �0� � grXT �1�, x 2 R2nM0,

sss�n�
ÿ
u�0�; x

�
� p�x� � gT�x�n, x 2M2

0 : �9�
We introduce the following linearly independent vector functions which satisfy the homogeneous LameÂ
system written in the stretched variables X � eÿ1x

U�1� �
�
1
0

�
, U�2� �

�
0
1

�
,

V�1� �
�
X1

0

�
, V�2� �

�
0
X2

�
, V�3� �

�
X2

X1

�
, V�4� �

�ÿX2

X1

�
:

The leading term u�0� of the expansion (8) admits the following representation in the vicinity of the
inclusion (coordinates x are the Cartesian coordinates with the origin at the center of the inclusion):

u�0��x�0u�0��0� � eX1
@u�0��x�
@x1

�����
0

�eX2
@u�0��x�
@x2

�����
0

� A1U
�1��X� � A2U�2��X� � C1eV

�1��X� � C2eV
�2��X� � C3eV

�3��X� � C4eV
�4��X�, �10�

where Ai, Ck are constants de®ned in terms of the components of the strain tensor evaluated for the
leading term of the displacement ®eld

C1 � @u�0�1

@x1
� e11�u�0��, C2 � @u�0�2

@x2
� e22�u�0��, C3 � 1

2

(
@u�0�2

@x1
� @u

�0�
1

@x1

)
� e12�u�0��:

3.2. The boundary layer solution e u�1�

The second term of the expansion, Eq. (8), can be speci®ed as a solution of the following boundary
value problem written in the stretched coordinates:
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mr 2u�1��X� � �l� m�rr � u�1��X� � 0, X 2 R2nG,

m0r 2u
�1�
0
�X� � ÿl0 � m0

�rr � u�1�0
�X� � 0, X 2 G,

sss�n�
ÿ
u�1�; X

�
ÿ sss�n�0

�
u
�1�
0 ; X

�
� sss�n�0

�
u
�0�
0 ; X

�
ÿ sss�n�

ÿ
u�0�; X

�
� �gÿ g0�T�X� X 2 @G,

u�X� � u0�X�, x 2 @G, sss�n�
ÿ
u�1�; X

�
40, jXj41 �11�

where we substitute the expression (10) instead of the leading term u�0�:
The ®eld e u�1��X� is a boundary layer characterizing the changes in the stress components near the

defect. If we look at the interface traction conditions of the problem (11) we can note that the traction
jump is de®ned by the leading term of the displacement ®eld u�0� and by the temperature ®eld T�X�:
Since both terms are uncoupled, we can split the jump in the traction boundary conditions (11)
associated with the term u�0� and with the temperature. The solution u�1� can be represented as a linear
combination of a solution with an elastic jump and a solution due to the temperature.

3.3. Model dipole ®elds

Note that stresses produced by the rigid body displacement U�1�, U�2� and V�4� are equal to zero. For
other vector polynomials V�i �, i � 1, 2, 3 we construct the ®eld W�i � which compensates the discrepancy
left by V�i � in the interface boundary conditions. At in®nity the vector functions W�i � admit the
asymptotic representation (see Movchan and Serkov, 1997):

W�i��X� �
X3
k�1

PikD
�k�T�X� �O

ÿ
jXÿ2j

�
, �12�

where Pik are the components of the PoÂ lya-SzegoÈ matrix of the defect, T�X� is the Green's tensor and
D�k� � V�k��@=@X� are vector di�erential operators associated with vectors V�k��X�:

The thermo-elastic ®eld W�4� solves the problem:

mr 2W�4��X� � �l� m�rr �W�4��X� � 0, X 2 R2nG,

m0r 2W
�4�
0
�X� � ÿl0 � m0

�rr �W�4�0
�X� � 0, X 2 G,

sss�n�
ÿ
W�4�; X

�
ÿ sss�n�0

�
W�4�0 ; X

�
� �lÿ l0�T �0�n, W�4� � W�4�0 , X 2 @G,

sss�n�
ÿ
W�4�; X

�
40, jXj41 �13�

It admits the following asymptotic representation as jXj41

W�4��X� �
X3
k�1

DkD
�k�T�X� �O

ÿ
jXjÿ2

�
: �14�

In Eq. (14) Dk are constants uniquely de®ned by the thermo-elastic properties and geometry of the
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defect (compare the representation (14) with the asymptotic expansions of the ®elds W�i ��X�, i � 1, 2, 3
(Eq. (12))).

Using the notations above, the second asymptotic term can be written in the form:

u�1��X� �
X3
i�1

CiW
�i��X� �W�4��X�: �15�

3.4. The third term of asymptotic expansion e2u�2�

The third term e2u�2��x� compensates the discrepancy in the boundary conditions on the crack surfaces
M2

0 :

mr 2u�2��x� � �l� m�rr � u�2��x� � 0, x 2 R 2nM0,

sss�n�
ÿ
u�2�; x

�
� ÿsss�n�

 X3
k�1

X3
i�1

CiPik �DkD
�k�T�x�; x

!
, x 2M2

0 , �16�

and can be represented in the form:

u�2��x� �
X3
i, k�1

Pik

�
T�k��x� ÿD

�k�T�x�
�
Cn �

X3
k�1

Dk

�
T�k��x� ÿD

�k�T�x�
�
: �17�

The ®eld T�k� can be found as a solution of the LameÂ system with the dipole body forces acting at the
center of the small defect and zero tractions on the crack surfaces:

mr 2T�k��x� � �l� m�rr � T�k��x� �D
�k�d�x� � 0, x 2 R 2nM0, sss�n�

ÿ
T�k�; x

�
� 0, x 2M2

0 : �18�

4. The stress intensity factors and the crack trajectory

Following Bueckner (1970) the stress intensity factors can be computed in terms of tractions applied
to the faces of a crack. He introduced the weight functions xxxI, xxxII such that the stress intensity factors
KI and KII corresponding to Mode-I and Mode-II loading can be represented via integral identities

KI �
���
2
p

p

�M0

p�x�xxxI�x� ds, KII �
���
2
p

p

�M0

p�x�xxxII�x� ds,

where p�x� are tractions applied to crack faces, xxxI is the weight function for Mode-I loading, xxxII is the
weight function for Mode-II loading. The similar idea has been used by Maz'ya et al. (1992). Their
method uses the Betti's formula (Timoshenko and Goodier, 1951) to obtain representation for the stress
intensity factor.

In this section our intention is to de®ne the increment of the stress intensity factor due to the presence
of the inclusion. Thus, we apply the Betti's formula to the weight function xxxII and the second asymptotic
term u�2�: The leading term u�0� of the asymptotic expansion, Eq. (8), gives us the stress intensity factor
but not the increment. First asymptotic term u�1� in Eq. (8) is the boundary layer near the defect and it
vanishes far away from the inclusion (on the crack faces). The next asymptotic term which describes the
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di�erence in ®elds with and without inclusion is u�2�: Thus if we would like to obtain the increment of
the stress intensity factor we should take into account u�2�: The Betti's formula is applied in the ring XR

�fx: 1
RRjxÿ �l, 0�jRRg: Integration goes along closed contour which includes the circle C1 around the

neighborhood of perturbed crack, upper and lower faces of crackM2
0 and the circle C2 with radius R,

which takes into account the far ®elds. The limit when R tends to in®nity is considered only after
integration Ð we apply the Betti's formula in the bounded domain.�

XR

n
xxxII�x� � L

ÿ
u�2�; x

�
ÿ u�2� � L

ÿ
xxxII; x

�o
dx

�
�
C1[M2

0
[C2

n
xxxII�x� � sss�n�

ÿ
u�2�; x

�
ÿ u�2� � sss�n�

ÿ
xxxII; x

�o
ds: �19�

Here L��, x� is the LameÂ operator of linear elasticity, given in Eq. (1) sss�n���, x� is the operator of
boundary conditions (3). The Mode-II weight function is given in terms of the angular part of the
Williams Mode-I vector FI:

xxxII � 4m
1� �

@

@x2

�r1=2FFFI�: �20�

It is also important to note that while the second term of the asymptotic expansion u�2� satis®es the
boundary value problem (16) in whole domain XR, it admits the asymptotic expansion (17) on the
boundary of outer circle C2 and the asymptotic expansion given by Eq. (9) from Movchan et al. (1991)
at the vicinity of the crack tip on the boundary C1. The laborious calculations show that left side of the
Eq. (19) can be evaluated by the expression

I �
X3
i, k�1

PikD
�i�u�0��x�D�k�xxxII�x�jx�x0 �

X3
k�1

DkD
�k�xxxII�x�jx�x0 , u�0��x� � KIr

1=2FFFI�f� �21�

corresponding to the leading term of the asymptotic expansion for the displacement ®eld in the vicinity
of the Mode-I crack.

The right side is correspondingly speci®ed in terms of stress intensity factors KI and increment of KII

(note that KII for unperturbed crack is supposed to be zero):

1

2
h 0�l�KI�l� ÿ KII�l�:

For further simpli®cations it is convenient to introduce the auxiliary vector L with the components:

L �

0BBBBBBBBB@

1

8m
������
2p
p

�
cos

5f
2
� �2�ÿ 3�cos

f
2

�
1

8m
������
2p
p

�
ÿ cos

5f
2
� �2�ÿ 1�cos

f
2

�
1

8m
���
x
p

�
sin

5f
2
ÿ sin

f
2

�

1CCCCCCCCCA
,

where f denotes the angle between the x-axis and a line joining the crack tip and the center of the
inclusion. Using the identity D�k��r1=2FFFI�jx0 �L�k�rÿ1=2 and also the expression (20) one can show that
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the expression (21) (left-hand side of the Betti's formula (19)) can be rewritten in following way

I � 2mKI

�1� ��r2
X3
i, k�1

@

@f

�
cos fL�i�PikL�k�

�
� 4m
�1� ��r3=2

X3
k�1

Dk

�
cos f

@

@f
L�k� ÿ 1

2
sin fL�k�

�
:

Now we take into account Sih (1991) criterion of the crack propagation (the validity of this criterion is
discussed in 2):

The crack propagates if the stress intensity factor KI is greater than the critical value K c
I : It propagates

as pure Mode-I crack, i.e. the stress intensity factor KII is equal to zero.
The crack path de¯ection is obtained after the integration of the expression (3) in the following form:

h�l� � 4m
�1� ��y0

X3
i, k�1

�
cos fL�i�PikL�k�

�����y
0

� 8m
KI�1� �� �����

y0
p

X3
k�1

�y
0

D�k�
�

cos f
@

@f
L�k� ÿ 1

2
sin fL�k�

�
df����������
sin f

p , �22�

where y denotes the angle between the x-axis and the line drawn through the crack tip and the center of
the inclusion, h�l � is the crack de¯ection about the x-axis. Note that the formula (22) holds for
thermoelastic inhomogeneities of an arbitrary shape.

5. Several examples of fracture propagation

5.1. Interaction between a crack and circular thermoelastic inhomogeneities

The formula (4) can be regarded as the crack de¯ection for any inclusion or their combination. The
morphology of the defects is speci®ed in terms of the PoÂ lya-SzegoÈ matrix P and the thermo-elastic
vector D: The only restriction on the application of this formula is the non-interactive behavior of
inclusions. In other words, we suppose that the inclusion is located far away from the crack and its
diameter is small in comparison with the distance to the crack. If there are several inclusions in a plane,
then the dilute limit is required. In this section we consider an interaction of a crack with a circular
inclusion: this is the simplest example, but it allows one the determine the main features of the
interaction mechanism.

In the problem where the inclusion is regarded to be circular we need to know the coe�cients of
matrix P and vector D: The complex variables technique developed by Muskhelishvili (1963) can been
used for these purposes. We omit the technical calculations and rewrite the PoÂ lya-SzegoÈ matrix for a
circular inclusion as it is given by Zorin et al. (1988). It is convenient to use the normalized form of the
matrix, where R (radius of the inclusion) is supposed to be equal to one:

P � mp�1� ��
0@X�Y XÿY 0
XÿY X�Y 0

0 0 2Y

1A, �23�

where
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Y � m0 ÿ m
�m0 � m

, X � 2m0��ÿ 1� ÿ 2m��0 ÿ 1�
��ÿ 1� 2ÿm��0 ÿ 1� � 2m0

� :
To calculate the thermoelastic vector D, we start with the analysis of the boundary conditions of the
problem (13) written in terms of the complex potentials

j�z� � zj 0�z� � c�z� � j0�z� � zj 00�z� � c0�z� � �gÿ g0�DTz,

�
�j�z� ÿ zj 0�z� ÿ c�z�

�m0
m
� �0j0�z� ÿ zj 00�z� ÿ c0�z�, �24�

and look for a solution which decays at in®nity like O�jzjÿ1�: Due to the Eshelby's theorem (Eshelby,
1957) the solution is linear inside the inclusion. Note that here and further in the text we write the
increment of temperature DT instead of T. This value can be either positive or negative and depends on
initial temperature which corresponds to zero thermal stresses. The complex potentials j�z� and c�z�
obtained from the analysis of the boundary integral equations based on the boundary conditions (24)
have the following form:

j�z� � O

�
1

jzj2
�
, c�z� � �gÿ g0 �DTm��0 ÿ 1�

2m0 � m��0 ÿ 1�
1

z
�O

�
1

jzj2
�
:

The components of the vector D can be found as the coe�cients multiplying the derivatives of the
Green's tensor in the asymptotic expansion (14). After some routine calculations we obtain

D � mp�gÿ g0�DT��0 ÿ 1���� 1�ÿ
2m0 � m��0 ÿ 1����ÿ 1�

0@ 1
1
0

1A: �25�

Two characteristics of the thermoelastic inclusion (PoÂ lya-SzegoÈ matrix P and vector D� are necessary to
determine the formula for the crack deviation due to the presence of the thermoelastic circular inclusion.
The last can be written after certain simpli®cations in the following form

Dh�l� � e 2
�
Dhme �l� �

1

KI

DhTe �l�
�
�O�e3�, �26�

where

Dhme �l� �
1

2

m0 ÿ m
�m0 � m

ÿ
cos yÿ �cos y�3

�
� 1

2

m0��ÿ 1� ÿ m��0 ÿ 1�
m��0 ÿ 1� � 2m0

ÿ
�cos y�2�cos yÿ 2

�
,

DhTe �l� �
m

������
2p
p
�g0 ÿ g�DT��0 ÿ 1�

2m0 � m��0 ÿ 1�
�y
0

sin
3f
2����������

sin f
p df,

or in the dimensional form (when the distance between the center of the inclusion and the unperturbed
crack y0 is not normalized)

Dh�l� � e2
�
Dhme �l�y0 �

1

KI
DhTe �l�y3=20

�
�O�e3 �, e � R

y0
: �27�
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5.2. Interaction of a crack with elliptical thermoelastic inclusions

In this section another example is considered: the perturbation of a crack due to an elliptical
thermoelastic inhomogeneity. An elliptical inclusion embedded in the elastic matrix has semi-axes a and
b, with the major axis inclined at an angle b to x-axis. The problem of the crack-inclusion interaction
reduces to ®nding the trajectory (22) and requires the values of the PoÂ lya-SzegoÈ matrix P and the
vector D for a given inclusion. The components of the PoÂ lya-SzegoÈ (symmetric) tensor have been
obtained by Movchan and Serkov (1997) (formulae (3.20) and (3.23) of that paper).

To ®nd the crack trajectory in the closed form the thermo-elastic vector D for the elliptical
inhomogeneity has to be evaluated. The algorithm includes solution of the boundary value problem for
the vector ®eld W�4� (Eq. (13)) and extraction of the components of the vector D from the asymptotic
expansion of the solution at in®nity. The following representation for the displacement ®elds (inside and
outside the defect) is used

W�4�0
�X� � W�4��0

�X� � a0DTX, W�4��X� � W�4���X� � aDTX, �28�

where W�4��X� are the displacement ®elds inside and outside the defect, a and a0 are the coe�cients of
the thermal expansions. The ®elds W�4���X� do not have the meaning of the total displacements, they are
just the remaining terms after subtracting the linear thermal expansion ®elds. It can be easily checked
that the boundary conditions in Eq. (13) can be rewritten for the ®elds W�4���X� and W

�4��
0 �X� in the

form

sss�n�0

�
W�4��0 ; X

�
� sss�n�

ÿ
W�4��; X

�
,

W�4��0
�X� ÿW�4���X� � �aÿ a0�DTx: �29�

Instead of a jump in the traction conditions (13) we have a jump in the ®elds W�4���X�:The coe�cients of
the thermal expansion are related by gi � 2�mi � li �ai:

The problem we are considering is the boundary value problem (13) and it describes the ®elds induced
by the defect on the crack faces. The crack propagates under the remote Mode-I loading (5) and the
solution of Eqs. (13) and (29) should give the perturbation of the external loading only. Using the
complex potential method the interface conditions (Eq. (29)) can be rewritten in the form:

1

2m

�
�j�x� ÿ o�x�

o 0�x�j
0�x� ÿ c�x�

�
ÿ 1

2m0

�
�0j0�x� ÿ

o�x�
o 0�x�j

0
0�x� ÿ c0�x�

�

� �a0 ÿ a�o�x�DT,

j�x� � o�x�
o 0�x�j

0�x� � c�x� � j0�x� �
o�x�
o 0�x�j

0
0�x� � c0�x�, jxj � 1, �30�

where the ®eld

W �4���z� � 1

2m

ÿ
�j�z� ÿ zj 0�z� ÿ c�z�

�
satis®es the remote condition
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W �4���z�4 ÿ aDTz, z � X1 � iX2 as jzj41:

The function o�x� is the Zukovskij function

z � o�x� � c1x� cÿ1xÿ1, with c1 � a� b

2
and cÿ1 � aÿ b

2
e2ib: �31�

The function (31) maps conformably the region corresponding to the elliptical inclusion in the z-plane
with a slit along the major axis of the ellipse between the point ÿeib

����������������
a2 ÿ b2
p

and the point eib
����������������
a2 ÿ b2
p

,
to a ring in the x-plane of internal radius R �

�������
aÿb
a�b

q
and of a unit external radius. So 0RRR1 and the

limit values 0 and 1 correspond to a circular and a line inclusion, respectively. The same function (31)
maps the region external to the ellipse into the region external to the circle of a unit radius. Solving the
system of equation (30) by the Kolosov method the complex potentials outside the defect are found in
the following form

j�z� � ÿ g
2
DTzÿ 1

2z

�a� b��g0 ÿ g�DT��0 ÿ 1�m�R4 ÿ 1�RYeib���0 ÿ 1�m� 2m0
��R4Y

���0 ÿ 1�mÿ 2�m0
� � o

�
1

z

�
,

c�z� � 1

2z

�a� b��g0 ÿ g�DT��0 ÿ 1�m�R4 ÿ 1��1ÿR 2Y����0 ÿ 1�m� 2m0
��R4Y

���0 ÿ 1�mÿ 2�m0
� � o

�
1

z

�
, �32�

That leads to the components of the vector D to be given by the following expression:

D1 �
�a� b�L
2��ÿ 1�

�
1ÿR2Y

ÿ
R 2 ÿ ��ÿ 1�cos b

��
, D2 �

�a� b�L
2��ÿ 1�

�
1ÿR2Y

ÿ
R 2 � ��ÿ 1�cos b

��
,

D3 �
�a� b� ���

2
p

L
2

R2Ysin b, L � �g0 ÿ g�DT��0 ÿ 1�mp�R4 ÿ 1���� 1����0 ÿ 1�m� 2m0
��R4Y

���0 ÿ 1�mÿ 2�m0
� : �33�

As before, we split up the total de¯ection of a crack on the elastic de¯ection (de¯ection under zero
increment of temperature) and the thermal de¯ection (di�erence between total and elastic de¯ection).
The elastic de¯ection can be speci®ed by the following formula:

Dh�l�m� ab

4y0

�
O�1ÿR4Y�

ÿ
t� t2 ÿ 2

�
� 2R2OY

h
sin 2b

ÿ
t� t2

�
�2tÿ 1�

�������������
1ÿ t2
p

ÿ cos 2b�tÿ t3��1� 2t�
i

� Y
1�R4Y

�tÿ t3 �
�ÿ
1�R4Scos 2 2b

��1ÿ t��1� 2t�2

�
ÿ
1� Ssin2 2b

��1� t��2tÿ 1�2ÿR4Ssin 4b
�������������
1ÿ t2
p �4t2 ÿ 1�

�	
t � cos y �34�

where
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O � 2
ÿ��ÿ 1�m0 ÿ ��0 ÿ 1�m�ÿ��0 ÿ 1�m� 2m0

��R4Y
ÿ��0 ÿ 1�mÿ 2�m0

� ,
S � 2Y��� 1�m0ÿ��0 ÿ 1�m� 2m0

��R4Y
ÿ��0 ÿ 1�mÿ 2�m0

� :
Whereas the thermal de¯ection is given by

DhT�l� � �a� b�L����������
2py0
p ��� 1�KI

��R4Yÿ 1�I1�y� �R 2Y
ÿ
I3�y�sin bÿ I2�y�cos b

�	
, �35�

where I1, I2, I3 are the integrals de®ned below:

I1�y� �
�y
0

sin
3f
2����������

sin f
p df, I2�y� �

�y
0

cos fsin
5f
2
� sin

7f
2����������

sin f
p df, I3�y� �

�y
0

cos fcos
5f
2
� cos

7f
2����������

sin f
p df:

One can observe that the elastic de¯ection of the crack at in®nity turns out to be the same as at the
origin, and it can be evaluated using the substitution y � p and y � p=2 in Eq. (34):

Dhm1 � Dhm�0� � ab

2y0
O�R4Yÿ 1� �36�

Fig. 2. The crack deviation due to the soft thermoelastic inclusion: g � 4 � 10ÿ3, g0 � 10ÿ3, DT � 100 K, � � 2, �0 � 2,

m0=m � 0:5�ÿ�, m0=m � 0:2�ÿÿ�, m0=m � 0:01�. . .�:

S.K. Serkov, A.B. Movchan / International Journal of Solids and Structures 37 (2000) 6605±6622 6617



At the same time, the contribution of the thermal de¯ection at in®nity is always equal to zero:

DhT4
�a� b�L����������

2py0
p ��� 1�KI

n
�R4Yÿ 1�I1�p� �R 2Y

ÿ
I3�p�sin bÿ I2�p�cos b

�o � 0:

Thus, the thermal de¯ection has only local e�ect, it a�ects the trajectory near the inclusion and does not
a�ect it at remote points.

5.3. Numerical data for the crack trajectories

Crack trajectories in the elastic media have been analyzed previously by Valentini et al. (1999) for
inclusions with ideal interphase contact and by Bigoni et al. (1998) for defects with debonding (imperfect
interphase) conditions. In this section, we describe the numerical results for analysis of the
inhomogeneous medium with a crack under additional heating (or cooling).

At the beginning we recall some results for the inhomogeneous elastic materials (no temperature
drop). Namely, the cavities and soft inclusions attract the crack, and the inclusions, which are more
rigid than the matrix material, repel the crack. If one introduces an additional temperature ®eld, these
statements become no longer valid. Depending on the temperature increment the crack de¯ection can
either be positive or negative for a range of the elastic parameters of the inclusions.

In numerical experiments the results of which are described below the trajectories of the cracks are

Fig. 3. The crack deviation due to the rigid thermoelastic inclusion: g � 10ÿ3, g0 � 10ÿ2, DT � 100 K, � � 2, �0 � 2, m0=m � 2�ÿ�,
m0=m � 5�ÿÿ�, m0=m � 50�. . .�:
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split into the `elastic' trajectories (trajectories of a crack in a medium with zero increment of a
temperature) and the thermal trajectories (di�erence between total and elastic de¯ection functions).

In Fig. 2 (top plot) the crack trajectories in a medium with soft inclusions are given. The de¯ection
functions correspond to the crack being attracted by the same size inclusions with di�erent shear
moduli. At the in®nitely remote point, as well as in all other points of the crack trajectory, the de¯ection
is positive, it corresponds to an attraction of the crack by the inclusion. However the presence of the
temperature (middle plot) changes the situation. It reduces the de¯ection of the crack near the inclusion
(bottom plot) and for some parameters the trajectory can be almost a straight line (solid line, bottom
plot). This example shows that the temperature can smooth out the crack path and change the positive
de¯ection by the negative (at least on the part of the trajectory).

In Fig. 3 (top plot) the crack trajectories caused by rigid inclusions are shown. Negative de¯ection in
all points of trajectories including the in®nite point is the characteristic feature of the rigid defects. Than
more rigid the inclusion is than it repels the crack more. It is important to note that all possible crack
trajectories are in the region bounded by the curve corresponding to m041 (lower bound) and m � 0
(upper bound). Here the temperature acts in a di�erent way, it provides the additional positive
de¯ection in such a way that the total de¯ection can be either positive or negative. Again we can see
that under certain values of parameters the amplitude of the de¯ection nearly vanishes (dashed line,
bottom plot).

In Fig. 4 (top plot) the case of di�erent Poisson's ratios is considered. Shear moduli of the matrix and
the inclusion are equal, but the parameters � and �0 which characterize the Poisson's ratios vary. If the

Fig. 4. The crack deviation due to the thermoelastic inclusions with the same shear modulus: g � 10ÿ3, g0 � 4 � 10ÿ3, DT � 100 K,

� � 2, m0=m � 1, �0 � 2�ÿ�, �0 � 1:5�ÿÿ�, �0 � 2:5�. . .�:
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Poisson's ratio of the inclusion is less than the Poisson's ratio of the matrix the crack is attracted by the
inclusion. In contrary, if Poisson ratio of the inclusion is greater the crack is repelled by the inclusion. If
the Poisson's ratios of the matrix and the inclusion are equal (and there is ideal interface contact on the
border) there is no any crack de¯ection, the trajectory is a straight line (solid line, top plot). However
that is true for zero temperature drop only. Once the elastic plane is under cooling (heating) the crack
perturbs (solid line, bottom plot). In contrary, the elastic de¯ection can be non-zero for zero
temperature change (dashed line, top plot) and the trajectory becomes straight if the temperature ®eld is
imposed (dashed line, bottom plot).

In further analysis the cracks with zero de¯ection at in®nity are considered. There are special types of
defects which the macro-crack is not sensitive to. Perturbation caused by these defects has only the local
e�ect Ð it occurs near the defect only. Any perturbations vanish when crack propagates further. Such
types of defects have the same bulk modulus as the material of the matrix. In Fig. 5 (top plot) the
illustration of this e�ect is presented: crack de¯ection at in®nity is zero and there are local perturbations
near the origin. The last are caused by the di�erence in shear moduli of the matrix and the inclusion.
The perturbation changes sign from positive to negative (or vice versa) depending on either the shear
modulus greater in the inclusion or in the matrix.

The thermal de¯ection itself (di�erence between the total de¯ection and the elastic one) is caused by
the thermal expansion e�ects only. If, for example, the coe�cients of bulk thermal expansion g and g0
are equal then the thermal de¯ection disappears even for a non-zero temperature increment. The integral
e�ect of the temperature can be speci®ed by the fact either the inclusion repels the crack or attracts it. It
depends on the di�erence between the thermal expansion coe�cients of the inclusion and the matrix and

Fig. 5. The crack deviation due to the thermoelastic inclusions with the same bulk modulus: g � 10ÿ3, DT � 25 K, m � 1, l � 1,

m0 � 1:5, l0 � 0:5, g0 � 2 � 10ÿ3�ÿ�, m0 � 0:5, l0 � 1:5, g0 � 10ÿ4�ÿÿ�, m0 � 1:95, l0 � 0:05, g0 � 3 � 10ÿ3�. . .�:
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the sign and absolute value of the temperature drop. The inclusion with greater thermal expansion
coe�cient then of the matrix repels the crack (the temperature change is positive). In contrary, the
inclusion with a small thermal expansion coe�cient attracts the crack. This e�ect can be formulated in
the following statement:

The sign of the thermal de¯ection of the crack is the same as the sign of �g0 ÿ g�DT:
The fact is illustrated in Figs. 2 and 3. The middle plots show the thermal crack trajectory is the

negative function for any variety of elastic parameters provided g > g0, DT > 0: For g < g0, DT > 0 the
thermal de¯ection is positive at any point of the crack trajectory.

The physical process is described by the total de¯ection (bottom plot in Figs. 2±5) where the elastic
and temperature e�ects are taken into account both. One of the results is that there are situations when
the temperature term compensates the in¯uence of the elastic term, and the resulting crack de¯ection
decreases (or nearly vanishes). The examples are presented in Figs. 2 and 5 (bottom plots).

Despite the fact that the analysis of the crack trajectory for an elliptical inclusion is more complicated
and more parameters involved (eccentricity m, rotation angle b� its integral impact on the crack
trajectory is similar one of the circular defect. In Fig. 6 we give the example of crack de¯ection due to
the elliptical elastic inclusions of di�erent eccentricities. It shows that crack trajectories can have
di�erent shapes depending on the parameter b, but integral e�ects (either de¯ection is positive or
negative or zero) do not depend on elongation of the ellipse. Another interesting observation is that the
rotation of the ellipse does not a�ect the value of de¯ection at in®nitely remote point (it follows from
Eq. (36)).

Fig. 6. The crack deviation due to the elliptical thermoelastic inclusions with the same elastic and thermal moduli: g � 10ÿ3,
g0 � 5 � 10ÿ3, DT � 100 K, � � 2, m0 � 0, m � 1, �0 � 2, b � 458, a � 1, b � 1�ÿ�, b � 0:5�ÿÿ�, b � 0�. . .�:
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